Integral Cayley Multigraphs over Abelian and Hamiltonian Groups
نویسندگان
چکیده
It is shown that a Cayley multigraph over a group G with generating multiset S is integral (i.e., all of its eigenvalues are integers) if S lies in the integral cone over the boolean algebra generated by the normal subgroups of G. The converse holds in the case when G is abelian. This in particular gives an alternative, character-theoretic proof of a theorem of Bridges and Mena (1982). We extend this result by providing a necessary and sufficient condition for a Cayley multigraph over a hamiltonian group to be integral, in terms of character sums and the structure of the generating set.
منابع مشابه
On the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملDistance Powers and Distance Matrices of Integral Cayley Graphs over Abelian Groups
It is shown that distance powers of an integral Cayley graph over an abelian group Γ are again integral Cayley graphs over Γ. Moreover, it is proved that distance matrices of integral Cayley graphs over abelian groups have integral spectrum.
متن کاملGroups all of whose undirected Cayley graphs are integral
Let G be a finite group, S ⊆ G \ {1} be a set such that if a ∈ S, then a−1 ∈ S, where 1 denotes the identity element of G. The undirected Cayley graph Cay(G, S) ofG over the set S is the graphwhose vertex set is G and two vertices a and b are adjacent whenever ab−1 ∈ S. The adjacency spectrum of a graph is the multiset of all eigenvalues of the adjacency matrix of the graph. A graph is called i...
متن کاملIntegral Cayley Graphs over Abelian Groups
Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The undirected Cayley graph Cay(Γ, S) has vertex set Γ and edge set {{a, b} : a, b ∈ Γ, a − b ∈ S}. A graph is called integral, if all of its eigenvalues are integers. For an abelian group Γ we show that Cay(Γ, S) is integral, if S belongs to the Boolean algebra B(Γ) generated by the subgroups of Γ. The converse is proven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013